
Revolutionaries and Spies on Graphs

Daniel W. Cranston
Virginia Commonwealth University

dcranston@vcu.edu

Slides available on my webpage
Joint with Jane Butterfield, Greg Puleo,

Doug West, and Reza Zamani

NIST ACMD Seminar
12 March 2013

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

r

r

r

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

sr

r

r

rs

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

s

rr

r

s

rr

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

r

rrs

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

r

r

rs

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.

Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.

Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

r r

r r

r r

r r

s s s

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.

So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

r r

r r

r r

r r

s s s

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

A Problem of Network Security
Setup: r revolutionaries play against s spies on a graph G .
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev’s want to get m rev’s at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

r

r

srr

rs

r

r

r r

r r

r r

r r

s s s

Obs 1: If s ≥ |V (G)|, then the spies win.
Obs 2: If s < |V (G)| and br/mc > s, then rev’s win.
Ex: Say m = 2, r = 8, and s = 3.
So we assume br/mc ≤ s < |V (G)|.

Def: σ(G ,m, r) is minimum number of spies needed to win on G .

Results (thresholds for spies to win)

1. br/mc spies can win on:

trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r =

7

5

r

2

σ(G , 3, r) =
1

2
r =

3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Results (thresholds for spies to win)

1. br/mc spies can win on: spy-good graphs
trees, dominated graphs, “webbed trees”

2. Random graph, hypercubes, large complete k-partite;
solved completely for unicyclic graphs

3. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r =

7

5

r

2

σ(G , 3, r) =
1

2
r =

3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

s s s s

r r r r r r r r r r r r r→ ← → ← ⇐ ←

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s← → ← ←

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s

s s s s

r r r r r r r r r r r r r← → ⇐ → ← ←

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.

Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good Graphs: Trees
Def: A graph G is spy-good if σ(G ,m, r) = br/mc for all m, r .

Ex: P9 is spy-good. Consider m = 3, r = 13, s = 4.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

s

s r r r r r r r r r r r r r

s s s s

Thm: Every tree is spy-good.
Pf Sketch: Write r(v) and s(v) for num. of rev’s and spies at v ;
C (v) is children of v ; and w(v) is num. of rev’s at descendants.

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋
1. Since ba + bc ≥ bac+ bbc, s(v) is nonnegative

2. If r(v) ≥ m, then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1

3.
∑

v∈T s(v) =
⌊
w(u)
m

⌋
=
⌊
r
m

⌋

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.

Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.

We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.

Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)].

Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Spy-good graphs: Dominated Graphs and Webbed Trees

Def: G is a dominated graph if G has a dominating vertex, u.

Thm: Every dominated graph is spy-good.
Pf Sketch: One spy covers each meeting; all unused spies go to u.
We find a matching between the old and new positions of spies.

Def: G is a webbed tree if G has a rooted spanning
tree T s.t. each edge of G not in T is between siblings.

Thm: Every webbed tree is spy-good.
Pf Sketch: Same strategy as for trees:

s(v) =

⌊
w(v)

m

⌋
−
∑

x∈C(v)

⌊
w(x)

m

⌋

Partition E (G) into subgraphs G (v) = G [v ∪ C (v)]. Simulate
a game in each G (v); use those moves in the actual game.
Each G (v) is a dominated graph, so we can use that result.

Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

σ(G , 2, r) =
7

5

r

2

Main ideas: Call the two parts X1 and X2.

I On each round, the two main threats of the rev’s are to form
as many uncovered meetings as possible in X1; or in X2. If the
spies defend against these two threats, then they won’t lose.

I By always keeping a large fraction of spies in each part,
the spies never need to look more than 1 move ahead.

I To win, on each round the spies maintain an invariant;
the proof goes by induction on the number of rounds.

Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

σ(G , 2, r) =
7

5

r

2

Main ideas: Call the two parts X1 and X2.

I On each round, the two main threats of the rev’s are to form
as many uncovered meetings as possible in X1; or in X2. If the
spies defend against these two threats, then they won’t lose.

I By always keeping a large fraction of spies in each part,
the spies never need to look more than 1 move ahead.

I To win, on each round the spies maintain an invariant;
the proof goes by induction on the number of rounds.

Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

σ(G , 2, r) =
7

5

r

2

Main ideas: Call the two parts X1 and X2.

I On each round, the two main threats of the rev’s are to form
as many uncovered meetings as possible in X1; or in X2. If the
spies defend against these two threats, then they won’t lose.

I By always keeping a large fraction of spies in each part,
the spies never need to look more than 1 move ahead.

I To win, on each round the spies maintain an invariant;
the proof goes by induction on the number of rounds.

Large Complete Bipartite Graphs

Thm: For a large complete bipartite graph G

σ(G , 2, r) =
7

5

r

2

Main ideas: Call the two parts X1 and X2.

I On each round, the two main threats of the rev’s are to form
as many uncovered meetings as possible in X1; or in X2. If the
spies defend against these two threats, then they won’t lose.

I By always keeping a large fraction of spies in each part,
the spies never need to look more than 1 move ahead.

I To win, on each round the spies maintain an invariant;
the proof goes by induction on the number of rounds.

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”

also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3

2
r
m

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”
also graph powers and “vertex blowups”

Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3

2
r
m

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”
also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r

=
7

5

r

2

σ(G , 3, r) =
1

2
r

=
3

2

r

3

(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3

2
r
m

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”
also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r =

7

5

r

2

σ(G , 3, r) =
1

2
r =

3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3

2
r
m

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”
also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r =

7

5

r

2

σ(G , 3, r) =
1

2
r =

3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.

Conj: As m grows: σ(G ,m, r) ∼ 3
2

r
m

Main Results and Open Problems

1. br/mc spies can win on:
trees, dominated graphs, “webbed trees”
also graph powers and “vertex blowups”
Problem 1: Characterize spy-good graphs

2. For large complete bipartite graphs:

σ(G , 2, r) =
7

10
r =

7

5

r

2

σ(G , 3, r) =
1

2
r =

3

2

r

3(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G ,m, r) < 1.58

r

m
, for m ≥ 4

Problem 2: Improve upper bounds for m ≥ 4.
Conj: As m grows: σ(G ,m, r) ∼ 3

2
r
m

	Title page
	Overview
	Results
	Spy-good Graphs: Trees
	Large Complete Bipartite Graphs
	Main Results and Open Problems

